A new test methodology based on structural resonance for mode I fatigue delamination growth in an unidirectional composite

نویسندگان

  • I. Maillet
  • Y. Gourinat
چکیده

A specific device has been set up to test by vibration resonance the mode I fatigue delamination growth onset of composite laminates. This test system, based on the DCB test specimen, is a mass-spring-specimen dynamic system designed to resonate. The defined operating conditions allow performing delamination propagation tests under imposed load and stopping the test under reproducible conditions, identical to the ones recommended in the ASTM-D6115 standard. This system allows fatigue tests to be driven up to 100 Hz, reducing the time taken by a factor of ten without detrimental heat being generated in the material. The effect of frequency on the fatigue delamination growth on mode I has been investigated through a comparison with standard tests performed at 10 Hz. A decrease in resistance to the propagation of delamination is observed with the increase in frequency for the composite studied. This frequency effect seems to be a strain rate effect and was taken in consideration by using dynamical critical energy restitution rate for the G–N curve plotting.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Buckling Behavior of Composite Plates with a Pre-central Circular Delamination Defect under in-Plane Uniaxial Compression

Delamination is one of the most common failure modes in composite structures. In the case of in-plane compressional loading, delamination of a layered flat structure can cause a local buckling in delaminated area which subsequently affects the overall stiffness of the initial structure. This leads to an early failure of the overall structure. Moreover, with an increase in load, the delaminated ...

متن کامل

Numerical Determination of Delamination Onset in Laminated Symmetric DCB Specimen

In this study, a novel numerical method is proposed for determination of mode-I interlaminar fracture toughness, GIc, in multi-directional (MD) double cantilever beam (DCB) specimens using fracture properties of unidirectional DCB specimens. Two factors, β and Dc are defined to minimize the undesirable effects on strain energy release rate. β describes the difference between maximum and average...

متن کامل

Mixed-mode I/II Interlaminar Fracture of CF/PEI Composite Material

Failures in composite materials occur mainly due to interlaminar fracture, also called delamination, between laminates. This indicates that characterizing interlaminar fracture toughness is the most effective factor in the fracture of composite materials. This study reports investigation on mixed-mode interlaminar fracture behaviour in woven carbon fibre/polyetherimide (CF/PEI) thermoplastic co...

متن کامل

Investigation of Mode I Delamination Resistance in Inter-ply and Intra-ply Hybrid Composites Reinforced with Basalt/Nylon Woven Fabrics

Due to their sensitivity to impact-induced delamination, woven fabric reinforced polymer composites have limited practical applications. Hybridization of polymer composites has been proposed as a solution to this problem. In this study, the effects of fiber reinforcement type, hybridization method, plies stacking sequence and loading rate on mode I delamination behavior of pure basalt, pure nyl...

متن کامل

Crack Behavior of the Aluminum Alloy 2024 Under Fretting Conditions

The initial stage of fretting fatigue crack growth is significantly influenced by tangential force induced by fretting action along the contact surface where a mixed-mode crack growth is involved. Fretting crack behavior of aluminum alloy 2024 was studied, taking into account the problem of contact asperities. Finite element was used for the determination of the stress field near the contact su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013